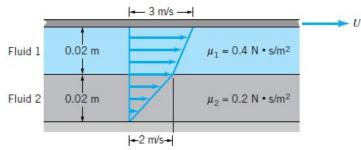
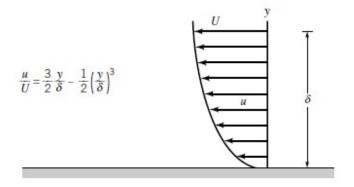
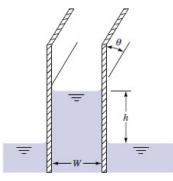

Fluid Mechanics Assignment # 1

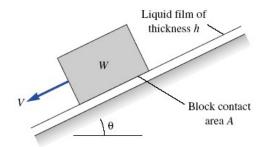
P1. Assume that the viscosity of blood is to be determined by measurements of shear stress, τ , and rate of shearing strain, du/dy, obtained from a small blood sample tested in a suitable viscometer. Based on the data given below determine if the blood is a Newtonian or non-Newtonian fluid. Explain how you arrived at your answer.


			0.12					
$du/dy (s^{-1})$	2.25	4.50	11.25	22.5	45.0	90.0	225	450

P2. A thin plate is separated from two fixed plates by very viscous liquids μ_1 and μ_2 , respectively, as in Fig. P2. The plate spacing h_1 and h_2 are unequal, as shown. The contact area is *A* between the center plate and each fluid.


(a) Assuming a linear velocity distribution in each fluid, derive the force F required to pull the plate at velocity V.


P3. Let two layers of fluid be dragged along by the motion of an upper plate as shown in Fig. P5. The bottom plate is stationary. The top fluid puts a shear stress on the upper plate, and the lower fluid puts a shear stress on the bottom plate. Determine the ratio of these two shear stresses.


P4. Determine the magnitude and direction of the shearing stress developed on the plate. Express your answer in terms of U and δ (the fluid is Newtonian).


P5. Derive an expression for the capillary height change *h* for a fluid of surface tension *Y* and contact angle θ between two vertical parallel plates a distance *W* apart, as in Fig. P4. What will *h* be for water at 20°C if W = 0.5 mm?

P1.45 A block of weight W slides down an inclined plane while lubricated by a thin film of oil, as in Fig. P1.45. The film contact area is A and its thickness is h. Assuming a linear velocity distribution in the film, derive an expression for the "terminal" (zero-acceleration) velocity V of the block.

1.65 A 12-in.-diameter circular plate is placed over a fixed bottom plate with a 0.1-in. gap between the two plates filled with glycerin as shown in Fig. P1.65. Determine the torque required to rotate the circular plate slowly at 2 rpm. Assume that the velocity distribution in the gap is linear and that the shear stress on the edge of the rotating plate is negligible.

